Flexible | Professional | Telephone 01792 732001





U028 – Further Maths for Engineering Technicians – Level 3 – 10 Credits [H/600/0280]

Aim and purpose

This unit aims to enhance learners’ knowledge of the mathematical principles used in engineering, enabling them to pursue further study on a higher education qualification in engineering.

Unit Introduction

Mathematics is an essential tool for any electrical or mechanical engineering technician. With this in mind, this unit emphasises the engineering application of mathematics. For example, learners could use an integral calculus method to obtain the root mean square (RMS) value of a sine wave over a half cycle.

The first learning outcome will extend learners’ knowledge of graph plotting and will develop the technique of using a graph to solve (find the roots of), for example, a quadratic equation.

Learning outcome 2 involves the use of both arithmetic and geometric progressions for the solution of practical problems. The concept of complex numbers, an essential tool for electrical engineers considering, is also introduced.

Learning outcome 3 considers the parameters of trigonometrical graphs and the resultant wave when two are combined. The use of mathematical formulae in the latter half of this learning outcome enables a mathematical approach to wave combination to be considered.

Finally, in learning outcome 4, calculus techniques are further developed and used to show their application in engineering.

Learning outcomes
On completion of this unit a learner should:

  1. Be able to use advanced graphical techniques
  2. Be able to apply algebraic techniques
  3. Be able to manipulate trigonometric expressions and apply trigonometric techniques
  4. Be able to apply calculus.


Recommended Resources


Bird J – Engineering Mathematic (Elsevier Science & Technology, 2007) ISBN 9780750685559
Greer A, Taylor G W – BTEC National Further Mathematics for Technicians (Nelson Thornes, 2005) ISBN 9780748794102
Tooley M and Dingle L – BTEC National Engineering, 2nd Edition (Newnes, 2007) ISBN 9780750685214





This unit links to the following related units:

Links to the following courses



Please share: